/*
wxMaxima 0.7.2 http://wxmaxima.sourceforge.net
Maxima 5.12.0 http://maxima.sourceforge.net
Using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1)
example(sinc);
(%i2)
example(commutative);
(%i5)
integrate(1/(1+x^2));
(%i6)
integrate(1/(1+x^2),x);
(%i7)
integrate(1/(1+x^1),x);
(%i8)
integrate(1/(1+x^3),x);
(%i9)
-log(x^2-x+1)/6+atan((2*x-1)/sqrt(3))/sqrt(3)+log(x+1)/3;
(%i10)
taylor(%, x, 0, 8);
(%i11)
((log((sqrt(3)*%i+3)/3)-log(-(sqrt(3)*%i-3)/3))*%i)/(2*sqrt(3));
(%i12)
ratsimp(%);
(%i13)
radcan(%);
(%i14)
factor(%);
(%i15)
expand(%);
(%i16)
trigsimp(%);
(%i17)
trigreduce(%);
(%i18)
wxplot2d([%], [x,-5,5])$
(%i19)
float((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6), numer;
(%i20)
if numer#false then numer:false else numer:true;
(%i21)
trigreduce(%);
(%i22)
(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6;
(%i23)
if numer#false then numer:false else numer:true;
(%i24)
gfactor(%);
(%i25)
gfactor()(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i25)
gfactor(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i25)
gfactor(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i25)
gfactor()(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i25)
gfactor()(sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6)));
(%i25)
gfactor((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i26)
if numer#false then numer:false else numer:true;
(%i27)
gfactor((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i28)
if numer#false then numer:false else numer:true;
(%i29)
gfactor((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i30)
gfactor(%);
(%i31)
radcan(%);
(%i32)
rectform(%);
(%i33)
polarform(%);
(%i34)
rectform((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i35)
rectform((sqrt(3)*%i*log(sqrt(3)*%i+4)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i36)
taylor((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6, x, 0, 8);
(%i37)
if numer#false then numer:false else numer:true;
(%i38)
if numer#false then numer:false else numer:true;
(%i39)
taylor(-log(x^2-x+1)/6+atan((2*x-1)/sqrt(3))/sqrt(3)+log(x+1)/3, x, 0, 16);
(%i40)
taylor(-log(x^2-x+1)/6+atan((2*x-1)/sqrt(3))/sqrt(3)+log(x+1)/3, x, 0, 30);
(%i41)
taylor(-log(x^2-x+1)/6+atan((2*x-1)/sqrt(3))/sqrt(3)+log(x+1)/3, x, 0, 100);
(%i42)
rectform(taylor(-log(x^2-x+1)/6+atan((2*x-1)/sqrt(3))/sqrt(3)+log(x+1)/3, x, 0, 100));
(%i43)
rectform(((log((sqrt(3)*%i+3)/3)-log(-(sqrt(3)*%i-3)/3))*%i)/(2*sqrt(3)));
(%i44)
rectform((sqrt(3)*%i*log(sqrt(3)*%i+3)-sqrt(3)*%i*log(3-sqrt(3)*%i))/6);
(%i45)
integrate(1/(1+x^3),x)-(-x^100/100+x^97/97-x^94/94+x^91/91-x^88/88+x^85/85-x^82/82
+x^79/79-x^76/76+x^73/73-x^70/70+x^67/67-x^64/64+x^61/61-x^58/58+x^55/55-x^52/52+x^49/49
-x^46/46+x^43/43-x^40/40+x^37/37-x^34/34+x^31/31-x^28/28+x^25/25-x^22/22+x^19/19-x^16/16
+x^13/13-x^10/10+x^7/7-x^4/4+x-%pi/(6*sqrt(3)));
(%i46)
plot(%,[x,0,10]);
(%i47)
plot2d(%,[x,0,10]);
(%i48)
integrate(1/(1+x^3),x)-(-x^100/100+x^97/97-x^94/94+x^91/91-x^88/88+x^85/85-x^82/82
+x^79/79-x^76/76+x^73/73-x^70/70+x^67/67-x^64/64+x^61/61-x^58/58+x^55/55-x^52/52+x^49/49
-x^46/46+x^43/43-x^40/40+x^37/37-x^34/34+x^31/31-x^28/28+x^25/25-x^22/22+x^19/19-x^16/16
+x^13/13-x^10/10+x^7/7-x^4/4+x-%pi/(6*sqrt(3)));
(%i49)
plot2d(%,[x,0,10]);
(%i50)
integrate(1/(1+x^3),x)-(-x^100/100+x^97/97-x^94/94+x^91/91-x^88/88+x^85/85-x^82/82
+x^79/79-x^76/76+x^73/73-x^70/70+x^67/67-x^64/64+x^61/61-x^58/58+x^55/55-x^52/52+x^49/49
-x^46/46+x^43/43-x^40/40+x^37/37-x^34/34+x^31/31-x^28/28+x^25/25-x^22/22+x^19/19-x^16/16
+x^13/13-x^10/10+x^7/7-x^4/4+x-%pi/(6*sqrt(3)));
(%i51)
plot2d(%,[x,0,1]);
plot2d(integrate(1/(1+x^3),x)-(-x^100/100+x^97/97-x^94/94+x^91/91-x^88/88+x^85/85
-x^82/82+x^79/79-x^76/76+x^73/73-x^70/70+x^67/67-x^64/64+x^61/61-x^58/58+x^55/55-x^52/52
+x^49/49-x^46/46+x^43/43-x^40/40+x^37/37-x^34/34+x^31/31-x^28/28+x^25/25-x^22/22+x^19/19
-x^16/16+x^13/13-x^10/10+x^7/7-x^4/4+x-%pi/(6*sqrt(3))),[x,0,0.8]);
(%i52)
fpprec : 32;
plot2d(integrate(1/(1+x^3),x)-(-x^100/100+x^97/97-x^94/94+x^91/91-x^88/88+x^85/85
-x^82/82+x^79/79-x^76/76+x^73/73-x^70/70+x^67/67-x^64/64+x^61/61-x^58/58+x^55/55-x^52/52
+x^49/49-x^46/46+x^43/43-x^40/40+x^37/37-x^34/34+x^31/31-x^28/28+x^25/25-x^22/22+x^19/19
-x^16/16+x^13/13-x^10/10+x^7/7-x^4/4+x-%pi/(6*sqrt(3))),[x,0,0.1]);
(%i53)
(%o53)
(%i54)
plot2d(integrate(1/(1+x^3),x),[x,0,0.1]);
(%i55)
(%o55)
(%i56)
plot2d(integrate(1/(1+x^3),x),[x,0,10]);
(%i57)
plot2d(integrate(1/(1+x^3),x),[x,/1,20]);
(%i57)
plot2d(integrate(1/(1+x^3),x),[x,-1,20]);
(%i58)
plot2d(integrate(1/(1+x^3),x),[x,-10,20]);
(%i59)
log10(x) := log(x) / log(10);
(%i60)
f(x):=integrate(1/(1+x^3),x);
(%i61)
ft100(x));
(%i61)
ft100(x):=x^100/100-x^97/97+x^94/94-x^91/91+x^88/88-x^85/85+x^82/82-x^79/79+x^76/76
-;
(%i61)
ft100(x):=x^100/100-x^97/97+x^94/94-x^91/91+x^88/88-x^85/85+x^82/82-x^79/79+x^76/76
-
x^73/73+x^70/70-x^67/67+x^64/64-x^61/61+x^58/58-x^55/55+x^52/52-x^49/49+x^46/46-x^43/43
+x^40/40-x^37/37+x^34/34-x^31/31+x^28/28-x^25/25+x^22/22-x^19/19+
x^16/16-x^13/13+x^10/10-x^7/7+x^4/4-x+%pi/(6*sqrt(3))$
(%i62)
ft100(x):=x^100/100-x^97/97+x^94/94-x^91/91+x^88/88-x^85/85+x^82/82-x^79/79+x^76/76
-
x^73/73+x^70/70-x^67/67+x^64/64-x^61/61+x^58/58-x^55/55+x^52/52-x^49/49+x^46/46-x^43/43
+x^40/40-x^37/37+x^34/34-x^31/31+x^28/28-x^25/25+x^22/22-x^19/19+
x^16/16-x^13/13+x^10/10-x^7/7+x^4/4-x+%pi/(6*sqrt(3))$
(%i63)
ft100(0);
(%i64)
fpprec : 32;
(%i65)
plot2d(log10(abs(f(x)-ft100(x))),[x,-1,10]);
plot2d(log10(abs(f(x)-ft100(x))),[x,-1,1]);
(%i66)
(%o66)
(%i67)