wxMaxima 0.7.4 http://wxmaxima.sourceforge.net
Maxima 5.14.0 http://maxima.sourceforge.net
Using Lisp SBCL 1.0.13
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1)
exp(-x^2);
(%i2)
exp(-x^2);
(%i3)
plot2d([exp(-x^2)], [x,-5,5],
[plot_format, gnuplot])$
(%i4)
diff(exp(-x^2),x);
(%i5)
plot2d([%o4], [x,-5,5],[plot_format, gnuplot])$
(%i6)
diff(exp(-x^2),x,2);
(%i7)
plot2d([%o6], [x,-5,5],[plot_format, gnuplot])$
(%i8)
taylor(exp(-x^2),x,2);
(%i9)
taylor(exp(-x^2),x);
(%i10)
taylor(exp(-x^2), x, 0, 4);
(%i11)
integrate(exp(-x^2),x);
(%i12)
integrate(exp(-x^2),x,[-inf,inf]);
(%i13)
integrate(%, x, minf, inf);
(%i14)
integrate(%o10, x, minf, inf);
(%i15)
integrate(%o10, x, inf);
(%i16)
integrate(%o02, x, inf);
(%i17)
integrate(%o2, x, inf);
(%i18)
integrate(%o2, x, 0, inf);
(%i19)
integrate(%o2, x, minf, inf);
(%i20)
taylor(exp(-x^2), x, 0, 8);
(%i21)
integrate(%o20, x, minf, inf);
(%i22)
integrate([taylor(exp(-x^2),x)], x, minf, inf);
(%i23)
integrate([taylor(exp(-x^2),x,100)], x, minf, inf);
(%i24)
integrate([taylor(exp(-x^2))], x, minf, inf);
(%i25)
integrate([taylor(exp(-x^2),x)], x, minf, inf);
(%i26)
integrate([taylor(exp(-x^2),x,100)], x, minf, inf);
(%i27)
integrate([taylor(exp(-x^2),x,0,100)], x, minf, inf);
(%i28)
integrate([taylor(exp(-x^2),x,0,100)], x, 0, inf);
(%i29)
integrate([taylor(exp(-x^2),x,0,200)], x, 0, inf);
(%i30)
integrate([taylor(exp(-x^2),x,0,200)], x, 0, 1000);
(%i31)
approx(x);
(%i32)
approx(%o30);
(%i33)
bfloat(integrate([taylor(exp(-x^2),x,0,200)], x, 0, 1000));
(%i34)
bfloat(integrate([taylor(exp(-x^2),x,0,200)], x, -1000, 1000));
(%i35)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -1000, 1000));
(%i36)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100));
(%i37)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100)-integral(exp(-x^2),x,
-inf,inf));
(%i38)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100)-integral(exp(-x^2),x,
-minf,inf));
(%i39)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100)-integrate(exp(-x^2),x,
-minf,inf));
(%i40)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100)-integrate(exp(-x^2),x,0,inf));
(%i41)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -100, 100)-integrate(exp(-x^2),x,minf,inf));
(%i42)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -10, 10)-integrate(exp(-x^2),x,minf,inf));
(%i43)
float(integrate([taylor(exp(-x^2),x,0,220)], x, -10, 10)-integrate(exp(-x^2),x,minf,inf));
(%i44)
float(integrate([taylor(exp(-x^2),x,0,220)], x, -1000, 1000)-integrate(exp(-x^2),x,minf,inf));
(%i45)
bfloat(integrate([taylor(exp(-x^2),x,0,220)], x, -1000, 1000)-integrate(exp(-x^2),x,minf,inf));
(%i46)
bfloat(integrate([taylor(exp(-x^2),x,0,10)], x, -1000, 1000)-integrate(exp(-x^2),x,minf,inf));
(%i47)
bfloat(integrate([taylor(exp(-x^2),x,0,10)], x, -1000, 1000));
(%i48)
bfloat(integrate([taylor(exp(-x^2),x,0,10)], x, -10, 10));
(%i49)
bfloat(integrate([taylor(exp(-x^2),x,0,100)], x, -10, 10));
(%i50)
taylor(exp(-x^2),x,0,100);
(%i51)
integrate(taylor(exp(-x^2),x,0,100),x);
(%i52)
integrate(taylor(exp(-x^2),x,0,100),x,0,1);
(%i53)
bloat(integrate(taylor(exp(-x^2),x,0,100),x,0,1));
(%i54)
bfloat(integrate(taylor(exp(-x^2),x,0,100),x,0,1));
(%i55)
bfloat(integrate(taylor(exp(-x^2),x,0,100),x,0,3));
(%i56)
bfloat(integrate(taylor(exp(-x^2),x,0,100),x,0,10));
(%i57)
bfloat(integrate(taylor(exp(-x^2),x,0,1000),x,0,10));
(%i58)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,10))], [x,-5,5],
[plot_format, gnuplot])$
(%i58)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,10)))], [x,-5,5], [plot_format, gnuplot]);
(%i58)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,10)), [x,-5,5], [plot_format, gnuplot]);
(%i58)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,10))], [x,-5,5], [plot_format, gnuplot]);
(%i58)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,10)], [x,-5,5], [plot_format, gnuplot]);
(%i59)
plot2d([integrate(taylor(exp(-x^2),x,0,1000),x,0,x)], [x,0,5], [plot_format, gnuplot]);
(%i60)
plot2d([integrate(taylor(exp(-x^2),x,0,100),x,0,x)], [x,0,5], [plot_format, gnuplot]);
(%i61)
plot2d([integrate(taylor(exp(-x^2),x,0,100),x,0,x)], [x,0,1], [plot_format, gnuplot]);
(%i62)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x)], [x,0,1], [plot_format, gnuplot]);
(%i63)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x)], [x,0,2], [plot_format, gnuplot]);
(%i64)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x)], [x,0,3], [plot_format, gnuplot]);
(%i65)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x)], [x,0,4], [plot_format, gnuplot]);
(%i66)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x)], [x,0,5], [plot_format, gnuplot]);
(%i67)
plot2d([integrate(taylor(exp(-x^2),x,0,200),x,0,x) -integrate(exp(-x^2),x,0,x) ],
[x,0,5], [plot_format, gnuplot]);
(%i68)
integrate(exp(-x^2),x,0,5);
(%i69)
bfloat(%);
(%i70)
float(%), numer;
(%i71)
bfloat(integrate(exp(-x^2),x,0,5));
(%i72)
float(integrate(exp(-x^2),x,0,5));
(%i73)
bfloat(integrate(exp(-x^2),x,0,5));
(%i74)
bfloat(integrate(exp(-x^2),x,0,5),16);
(%i75)
tofloat(integrate(exp(-x^2),x,0,5),16);
(%i76)
if numer#false then numer:false else numer:true;
(%i77)
bfloat(integrate(exp(-x^2),x,0,5));
(%i78)
integrate(taylor(exp(-x^2),x,0,200),x,0,4) -integrate(exp(-x^2),x,0,4);
(%i79)
integrate(taylor(exp(-x^2),x,0,200),x,0,5) -integrate(exp(-x^2),x,0,5);
(%i80)
if numer#false then numer:false else numer:true;
(%i81)
integrate(taylor(exp(-x^2),x,0,200),x,0,5) -integrate(exp(-x^2),x,0,5);
(%i82)
bfloat(%);
(%i83)
float(%);
(%i84)
float(integrate(taylor(exp(-x^2),x,0,200),x,0,4) -integrate(exp(-x^2),x,0,4));
(%i85)
float(integrate(taylor(exp(-x^2),x,0,200),x,0,1) -integrate(exp(-x^2),x,0,1));
(%i86)
fpprec : 20;
(%i87)
float(integrate(taylor(exp(-x^2),x,0,200),x,0,1) -integrate(exp(-x^2),x,0,1));
(%i88)
float(integrate(taylor(exp(-x^2),x,0,200),x,0,4) -integrate(exp(-x^2),x,0,4));
(%i89)
float(integrate(taylor(exp(-x^2),x,0,200)-exp(-x^2),x,0,4));
(%i90)
integrate(taylor(exp(-x^2),x,0,200)-exp(-x^2),x,0,4);
(%i91)
if numer#false then numer:false else numer:true;
(%i92)
if numer#false then numer:false else numer:true;
(%i93)
integrate(taylor(exp(-x^2),x,0,20)-exp(-x^2),x,0,4);
(%i94)
plot2d([taylor(exp(-x^2),x,0,200)-exp(-2^x)], [x,0,5], [plot_format, gnuplot]);
(%i95)
plot2d([taylor(exp(-x^2),x,0,20)-exp(-2^x)], [x,0,5], [plot_format, gnuplot]);
(%i96)
plot2d([taylor(exp(-x^2),x,0,200)-exp(-2^x)], [x,0,4], [plot_format, gnuplot]);
(%i97)
plot2d([taylor(exp(-x^2),x,0,50)-exp(-2^x)], [x,0,4], [plot_format, gnuplot]);
(%i98)
plot2d([taylor(exp(-x^2),x,0,100)-exp(-2^x)], [x,0,4], [plot_format, gnuplot]);
(%i99)
plot2d([taylor(exp(-x^2),x,0,150)-exp(-2^x)], [x,0,4], [plot_format, gnuplot]);
(%i100)
plot2d([taylor(exp(-x^2),x,0,150)-exp(-x^2)], [x,0,4], [plot_format, gnuplot]);
(%i101)
plot2d([taylor(exp(-x^2),x,0,200)-exp(-x^2)], [x,0,5], [plot_format, gnuplot]);
(%i102)
plot2d([taylor(exp(-x^2),x,0,20)-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i103)
plot2d([taylor(exp(-x^2),x,0,10)-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i104)
plot2d([taylor(exp(-x^2),x,0,1)-exp(-x^2)], [x,0,1], [plot_format, gnuplot]);
(%i105)
plot2d()-exp(-x^2)], [x,0,1], [plot_format, gnuplot]);
(%i105)
plot2d([-exp(-x^2)], [x,0,1], [plot_format, gnuplot]);
(%i106)
plot2d([(taylor(exp(-x^2),x,0,10))-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i107)
plot2d([taylor(exp(-x^2),x,0,10)], [x,-5,5], [plot_format, gnuplot]);
(%i108)
plot2d([taylor(exp(-x^2),x,0,100)], [x,-5,5], [plot_format, gnuplot]);
(%i109)
plot2d([taylor(exp(-x^2),x,0,200)], [x,-4,4], [plot_format, gnuplot]);
(%i110)
maxtayorder:false;
(%i111)
plot2d([(taylor(exp(-x^2),x,0,10))-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i112)
maxtayorder:true;
(%i113)
plot2d([(taylor(exp(-x^2),x,0,10))-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i114)
plot2d([taytorat((taylor(exp(-x^2),x,0,10)))-exp(-x^2)], [x,-5,5], [plot_format, gnuplot]);
(%i115)
plot2d([taytorat((taylor(exp(-x^2),x,0,100)))-exp(-x^2)], [x,-5,5], [plot_format,
gnuplot]);
(%i116)
plot2d([taytorat((taylor(exp(-x^2),x,0,200)))-exp(-x^2)], [x,-4,4], [plot_format,
gnuplot]);
(%i117)