Feasibility of Making E-blocks for Computer Graphics

Theo M. Verelst*
www.theover.org

Figure 1: Two demo boards with DSP and FPGA connected.

Abstract

In line with the quest for chips which can perform graphics com-
putation acceleration we experimented with and implemented some
working graphics computation blocks and tested their function and
to some extend their speed using readily available DSP and FPGA
(programmable logic) demo boards, which are connected over a
self made bus. It is made credible that with inexpensive means
sensible graphics acceleration can be achieved which probably can
compete with or add to state of the art consumer graphics com-
puter systems. The used graphics computation primitives are cho-
sen in line with the work of [Verelst 1991] in terms of thinking
about Bezier surfaces as alternative graphics primitive throughout
design and rendering phases and is direct extension of the ideas pre-
sented by [Pulleyblank and Kapenga 1987], though in parallel (not
serial) unit computation sense.

CR Categories: C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Real-time and embed-
ded systems; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems—Signal processing sys-
tems G.2 [Mathematics of Computing]: Discrete Mathematics—
Applications

Keywords: graphics hardware, prototypes, bezier, subdivision,
FPGA, DSP

1 Introduction

Many graphics machines, interfaces and programming methods al-
ready exist, most current machines are based on polygonal render-

*e-mail: theover@tiscali.nl

ing acceleration or general purpose computers. Other systems are
usually exotic or out-dated because of the pace in which electrical
engineering allows new hardware to keep up with Moore’s law.

So it pays to look for ways to make interesting graphics (and sound)
rendering architectures last with time, so that the latest chip tech-
nology with existing software expands the horizon of graphics ma-
chines.

Open and Free Software have proved strong for keeping general
audience computer standards up, open hardware is also emerging.
Standard blocks like adders and multipliers, dividers, transform
units are becoming available on the internet in standard hardware
description languages like VHDL and Verilog.

In the time of microcontrollers and special purpose chips the elec-
trical engineering world is showing a tendency to like E-blocks:
units with clear connections and function which can be connected
together.

This is a bit of a weak spot in the world of electronics, computers
and computer hardware: interfaces, drivers, and standard hardware
blocks are not so readily available for strong or advanced use unless
maybe for commercial R&D funding levels, but the strength of the
Free and Open Source thought is clearly being proven in Linux and
many projects, also in graphics (OpenGL/Mesa, X.org, Radiance,
POVRay, OpenSceneGraph, etc.) to provide a large audience with
quality programs, and counter the closing up and claiming attitudes
of giants like Microsoft.

At fairly low budget, we’ve looked at the combination of a Black-
fin DSP and a Spartan-3 Field Programmable Gate Array both on
demonstration boards which can readily be purchased. The main
target was to ascertain the communication can work with a self
made bus connection, and that a relevant graphics computation can
be accelerated on the FPGA, in this case a Bezier subdivision with
result selection and bounding box data, at significant speed.

The design tools come with the demo boards and are used without
special licenses or extra tools for programming and debugging. In
addition the main algorithms to render images with subdivision of
Bezier curves are shown to work in a C program on cygwin (win-
dows) and on Linux (64 bit).

2 Bezier curves and surfaces
and their application

Powerful graphics hardware for fair prices allows quite fast render-
ing of polygonal surfaces when curved surfaces are approximated
on them, errors are often visible. Ray tracing and radiosity com-
putations with ray tracing operations are usually not well acceler-
ated by standard graphics engines, and require significant comput-
ing power even for fast machines and that doesn’t get better with
curved surfaces.

Bezier curves and surfaces , in this case cubic, are pleasant curved
primitives, and are also suitable for interpolation.

In general Bezier curves, and by tensor construction also surfaces,
are spanned by a number of control points, which form the curve
by using Bernstein polynomials which multiply each point:

B(t) = i P; bl (), 1€]0,1] (1)
i=0

Where the Bernstein polynomials are defined as:

b= () - @

Written out for cubic case (n=3):

B3 (1) =Po(1—1)3 +3P11(1 —1)> + 3P > (1 —1) +P3> (3)
1€0,1]

The control points can be of any dimension, 2 for plane curves, 3 for
3D curves, or 4 for homogeneous coordinates, which can to great
advantage be used to create mathematically correct circular shapes.

The end point of such curve can be seen to coincide with Py and P3,
while the tangents at those points correspond with the connection
lines to point 1 and 2.

Using tensors gives us 3 dimensional surfaces by multiplying two
curves and seeing them as spanning the u and v surface coordinate
space.

3 Subdivision

Bezier subdivision according to De Casteljau’s algorithm is a fast
operation to make two Bezier curves or surfaces from one. Every
coordinate is divided with the same scheme, where each lower line
element is the average of the elements left and right above it as is
shown in figure 2.

i0 i1 i2 i3
a b c
d e
f

Figure 2: Bezier subdivision scheme.

so for instance b = (i1+i2)/2 , where i is incoming data. The result-
ing curves made from the coordinate components corresponding to
(i0,a,d,f) and (f,e,c,i3) or surfaces (where the subdivision is 4 fold)

Figure 3: Rendering by flat projection with bounding boxes in 3D
with z-buffer using 16 bits overall accuracy.

can be proven to together represent mathematically the same curve
or surface as the original.

Figure 3 has been made with a C program based on repeated Bezier
subdivision of 3D coordinates of cubic patches, in this case only 2:
the top sheet and the bottom bulges.

The following is a piece from the C program to compute repeated
3D subdivisions to render a orthogonally projected image (available
as Open Source software), where a single subdivision is computed
in a loop:

= (in[0] [i1[0] [j] + in[0][i1[11[j1)/2 ;
= (in[0] [i]1[11[j] + in[0][i]1[21[j1)/2 ;
= (in[0][11[2]1[j] + in[0][i]1[3]1[j1)/2 ;
= (a+b)/2;
= (b+c)/2;
= (d+e)/2;

H O Qo0 T
|

Coarse benchmarking of the programs was done on two machines,
on a Dual Core Pentium machine (3GHz, dual bank memory, XP
/ Cygwin gcc C compiler version 3.4.4, using only one core) the
image as shown took about 0.53 sec to compute, which contains
524256 patch subdivisions, which is 4 (u direction) x 8 (resulting
2 in v direction) x 3 (X,y,z coordinates) = 12 one dimensional sub-
division steps. When increasing subdivision depth, 55.7 seconds
is measured for 33554400 patch subdivisions, equaling about 400
million subdivision operations. On an Athlon 64 3.3GHz machine
(moderate chipset, Fedora Core 4 64 bit / gcc C compiler 4.0.0),
respectively 0.65 sec. and 56.5 seconds were measured. All these
figures contain also time for flat projection and file reading and writ-
ing, but subdivisions consume most of the time.

For the larger number of subdivisions, the different PC’s both do
about 20 million subdivisions per second instead of 30 million,
probably due to memory access over a larger memory range (less
caching).

For the programmable logic, the basic subdivision block is in 16 bit
form shown in figure 4.

Figure 4: A 16 bit bezier subdivision unit

The wedge shaped units are 16 bit adders, which are followed by
a shift right block, which also reads the carry bit from the adders.
Data flows from left to right, all external connections are 16 bits
wide.

4 Quick min/max in FPGA

To determine the size in each dimension a Bezier surface after sub-
division the convex hull property can be taken in a looser way by
using rectangular bounding boxes, which exactly encloses all con-
trol points, and are aligned with the coordinate axes. Every point
on the surface can be proven to be inside the 3D bounding box.

To compute the bounding box, the minimum and maximum of the
control points in each dimension (for instance xmin, xmax, ymin,
ymax, zmin, zmax) is needed, for which a comparison operation
is needed, which is possible reasonably efficient in terms of logic
circuits, at least by doing a subtraction and sign check (equals a
inversion, carry in and binary addition and MSB bit test) or, as here,
a specialized binary number compare circuit of limited complexity.

S
coupucts ||
|

i

. -

]

Q

OuPICT COMPMC1E

comPuCts
-

s

3t

[Tt |

Figure 5: The Bounding Box computation unit for one dimension.

Figure 5 shows the designed one dimensional bounding box com-
putation unit made of 6 comparators, 2 one out of four 16 bit wide
selectors, and a priority encoder-like circuit.

The maximum length of the data path is a comparison, a selection
and relatively fast combinatory logic circuit, so the result is avail-
able very quickly after the input is offered. The output is a mini-
mum and a maximum 16 bit number, which is a selection from the
inputs. The unit tests correct.

5 Developing DSP program, hardware

blocks, and communication

The VisualDSP environment allows programming in C and debug-
ging the dual core DSP on the evaluation board, and access to its
memory and registers.

The (free) Webpack software has an integrated project manager,
schematic digital block editor, VHDL block facility, and programs
the demo board using a cheap and easy to use parallel port JTag
interface, either for repeatedly programming the FPGA or burning
the configuration in flash memory.

A bus connection has been prototyped between the DSP asyn-
chronous bus interface and some twenty pins of the FPGA board
with fitting connectors and series resistors on the side of the DSP to
make sure the prototyping and testing process wouldn’t blow any-
thing up, this however has a speed impact.

The bus gives in the test configuration access to 8 memory mapped
16 bit readable and writable locations, currently running at roughly
20 Mega accesses per second, equivalent to 40MB/sec. Those ac-
cesses are uncached, and direct, that is unpipelined: the finest gran-
ularity is simply one read or write, with a little speed overhead for
accesses spreading out over memory banks (but not when the DSP
as normal runs from an internal fast memory). The speed is not up
to lets say high end graphics buses, but for audio purposes its pretty
high, and it can probably be upgraded by taking the current limit
resistors out, shortening the wires, doubling the bus width to 32bit,
and adjusting the bus timing parameters to the maximum 25 or 33
Mega accesses per second, giving in this case a maximum of over a
hundred megabyte per second. The programmable logic should be
up to at least 400 Megabyte per second on a 32 bit bus, which starts
to get serious in comparison with existing graphics buses.

The DSP debug environment allows access in all kinds of number
representation to memory locations, which is used to access the
memory mapped addresses 16 bit at the time.

The DSP programming is done in C, which is well readable, and
can be reasonable efficient, while care must be taken that compiler
and assembler optimization can affect memory access order, and of
course external memory access considerably slows down the DSP
core(s).

To test the hardware and communicate with it, this is a fragment
from the DSP main source code which writes a one dimensional
Bezier curve to the Spartan , reads back immediately the outcome
of the accelerators computations, in this case a single Bezier sub-
division, binary compares it with a DSP based computation of the
same formula with the same bit-width and counts the errors:

short bezsubil(al,a2,a3,ad)
short al,a2,a3,a4;
{
return((((al+a2)/2+(a2+a3)/2)/2
+((a3+a4)/2+(a2+a3)/2)/2)/2);

count = 0;

for (i=0; i<256; i++)
for (j=0; j<32000; j++) {
*(p1+0x80) = 10000+3/2;

*(p1+0x82) = 32000-j;
*(p1+0xa0) = 67;
*x(p1+0xa2) = 50+j;
ssync();

if (*(p1+0x80) !=
bezsub1(10000+3/2,32000-3,67,50+3))
count++;
}
* (unsigned short *) 0x2c000000 = 0x101;
printf("count %d\n", count);

When it’s done with the 256 iterations of 32000 different input
numbers and checks, it sets a LED display on the board to 1 using
the same interface, and prints on the DSP IDE the number of er-
rors, which after the bus interface speed had been set has only been
zero during hundreds of tests, except when on purpose an error is
introduced in the formulas.

The sync() is to make sure the DSP compiler or assembler doesn’t
change the order of memory accesses when packing up to 4 DSP
instructions in a pipelined packed instruction, which would make
the result mapped memory I/O location read before the multiple
inputs are set. In this example, the memory accesses form a major
part of the DSP processor time, and the single Bezier subdivision
chain block in the FPGA responds in the time it takes to do a read
after the last write to its inputs which is in the order of 50 nano
seconds, which is probably very easy to keep up with, in practice
no errors (because of delay) were observed.

No attempts were yet made to add functionality to the FPGA circuit
to autoclock it and determine the upper speed bound. Also, there
has not yet been made much use of it memory capabilities, except
for multiple 16 bit latches/registers. The bounding box computation
unit also has been tested in similar fashion as the above and was also
faultless.

To determine the amount of computations that could be done by
the FPGA (a 3200 slice one, 200,000 gate equivalent), 12 Bezier-
select-bbox units have been put together in 3x4 array which can
correspond to 4 repeats subdivision steps on 3 coordinates simulta-
neously, like in figure 6.

mmll

Figure 6: Impression of the structure of a test Bezier subdivision
chain set from the actual prototype schematics.

On the left the 3 coordinates x 4 tuples x 16 bit = 192 bit buffered
input is shown, which feeds the three subdivide chains with per

unit a select between the output curves and a min/max coordinate
output.

On the right selectors can simultaneously feed back 6 words to the
Blackfin interface circuitry consisting of 4 resulting Bezier control
points, and a minimum and maximum of these numbers from each
of the three chains.

Main purpose was to check the design software and the xilinx with
a larger number of units being used. Improvements are quite pos-
sible: selecting can be more efficient because only half the compu-
tations are needed, bounding boxes probably aren’t needed every-
where like when there is no interest in having achieved a certain
accuracy limit, and the chain idea is probably inefficient compared
to fast (internal) memory storing intermediate results for more par-
allel chains.

The design software had to reiterate to fit the circuit with a little
less speed and its preferable to use a heavy machine to run it on
or interaction experimentation times are replaced by batch FPGA
programming. After reiterating 99% of the slices were used and the
circuit worked fine.

6 Analysis of actual and possible speed

The speed of the setup has been analyzed by running a DSP pro-
gram in a loop, which accesses the programmed hardware during
the course of execution of the inner loop, and which compares each
result from the FPGA, which is read back over the memory mapped
bus connection, bit for bit to make sure no computation or commu-
nication error has been made during each individual computation in
the inner computation loop.

The FPGA can immediately after setting the last memory mapped
register be read back for the result, so 50nS later. The memory
accesses were tested to be the bottleneck in the DSP program.

According to the FPGA programming and simulation software, the
overall longest path was in the order of 10 nSec so 100 Mega ac-
cesses per second should be possible when the bus wouldn’t exhibit
delay, but detailed analysis has not been done.

Bear in mind that the power consumption and form factor of these
solutions are very small compared with for instance PCs and high
end graphics cards. When well used, the post stamp size chip uses
maybe a few watts, without need for extra cooling, and the FPGA
is also very small, cheap, and uses (under higher load) maybe a few
watts, too.

Efficient use of the Bezier blocks is possible when the FPGA con-
trols the data flow, and can iterate itself, for instance to search in-
tersections, or project using a Z-buffer. It would seem reasonable
to assume a single Bezier subdivision and possibly added bounding
box test can be done in 10nS. In fact, it is possible this can be even
less, multiplies can even be done in less. That would make one
subdivide unit faster than a current PC effectively seems to give,
though of course parallelism could be used and the PC can com-
pute in higher accuracy. Ten of such units would mean a possible
order of magnitude speedup from a (relatively small) FPGA, as-
suming those units can compute sensible things, and assuming that
in that situation like now temperature increase is absent or within
limits.

Finally, taking numerical averaging accuracy into account, 16 bits
can be subdivided maybe 8 times to still be able to compute normals
from the results which are suitable for viewing. Assuming results
converge properly, 16 bits can give a small error when the integer

range is well used, but it is likely that not all types of computations
are satisfactory in 16 bits.

The design environment for the FPGA, and to an extend also for the
DSP are not suitable for immedeate, short learning time use, and
require considerable knowledge to use right and effective, though
both come with examples. Maybe a good open source project can
change that.

7 Conclusion

The setup at a low budget and with easy to obtain tools works, and
can even be foreseen to be usable as an Open Source development
solution with serious applications.

The subdivision operation is a useful graphics primitive which can
be efficiently implemented in hardware, and in various forms be
used for accelerating ray tracing or projection computations. It ap-
pears worth the effort of making the hardware and using it in prac-
tice after some programming and optimization.

The same signal processing with programmable hardware combina-
tion can also be used for audio purposes where the bus bandwidth
is more than sufficient for relevant applications.

Testability and repeated programmability in combination with a
PC are quite acceptable, while (limited) benchmarking indicates
enough competitive edge with existing fast PCs.

References

PULLEYBLANK, R., AND KAPENGA, J. 1987. The feasibility
of a vlsi chip for ray tracing bicubic patches. IEEE Computer
Graphics and Applications 7, 3, 33—44.

VERELST, M. T. 1991. A CAGD System Framework with Rational
Cubic Bezier Surfaces as Graphics Primitives. Master’s thesis,
Delft University of Technology, dept EE, Network Theory Sec-
tion.

